About minimal fractions

Arkady M.Alt

$$
09.12 .2018
$$

Abstract

Starting with concrete problems related to fractions with minimal denominator, laying in given interval, in this note we will consider their generalizations with correspondent theory and solutions of it in algorithmic spirit.

I. Introduction.

As introduction we will start from two concrete problems with consideration of different ways to solve them.

Problem1.

Let m, n be positive integers such that $\frac{7}{10}<\frac{m}{n}<\frac{11}{15}$.
Find the smallest possible value of n.
Solution 1.
$\frac{7}{10}<\frac{m}{n}<\frac{11}{15} \Longleftrightarrow\left\{\begin{array}{c}10 m-7 n=k \\ 11 n-15 m=l \\ k, l \in \mathbb{N}\end{array} \Longrightarrow\right.$
$3(10 m-7 n)+2(11 n-15 m)=3 k+2 l \Longleftrightarrow$
$3(10 m-7 n)+2(11 n-15 m)=3 k+2 l \Longleftrightarrow$
$n=3 k+2 l$ and $11(10 m-7 n)+7(11 n-15 m)=11 k+7 l \Longleftrightarrow$ $5 m=11 k+7 l$.
Since $5(m-(2 k+l))=k+2 l$ then minimal value of $3 k+2 l$, where $k, l \in \mathbb{N}$ and $k+2 l$ is divisible by 5 can be attained only if $k=1, l=2$. That is $\min n=7$ and correspondent $m=5$ and, therefore, desired fraction is $\frac{5}{7}$.

Solution 2.

Consider interval (α, β) where $0<\alpha$ and two transformation.
Transformation 1 (in the case $\beta<1$.)
$T_{1}: \quad \operatorname{IfI}=(\alpha, \beta)$ then $T_{1}(I)=\left(\frac{1}{\beta}, \frac{1}{\alpha}\right)$ and if $\alpha<\frac{p}{q}<\beta \operatorname{then} T_{1}\left(\frac{p}{q}\right)=\frac{q}{p} ;$
Transformation 2.(in the case $\alpha>1$).
$T_{2}: \quad$ If $I=(\alpha, \beta)$ then $T_{2}(I)=(\alpha-[\alpha], \beta-[\alpha])$ and if $\alpha<\frac{p}{q}<\beta$ then $T_{2}\left(\frac{p}{q}\right)=\frac{p}{q}-[\alpha]$.

Applying both transformation to $\left(\frac{7}{10}, \frac{11}{15}\right)$ we obtain
$T_{1}\left(\frac{7}{10}, \frac{11}{15}\right)=\left(\frac{15}{11}, \frac{10}{7}\right), T_{2}\left(\frac{15}{11}, \frac{10}{7}\right)=\left(\frac{15}{11}-1, \frac{10}{7}-1\right)=\left(\frac{4}{11}, \frac{3}{7}\right)$,
$T_{1}\left(\frac{4}{11}, \frac{3}{7}\right)=\left(\frac{7}{3}, \frac{11}{4}\right), T_{2}\left(\frac{7}{3}, \frac{11}{4}\right)=\left(\frac{7}{3}-2, \frac{11}{4}-2\right)=\left(\frac{1}{3}, \frac{3}{4}\right)$,
$T_{1}\left(\frac{1}{3}, \frac{3}{4}\right)=\left(\frac{4}{3}, 3\right), T_{2}\left(\frac{4}{3}, 3\right)=\left(\frac{4}{3}-1,3-1\right)=\left(\frac{1}{3}, 2\right)$.
Fraction with minimal denominator in $\left(\frac{1}{3}, 2\right)$ is $\frac{1}{1}$.
Then, applying in reverse inverse transformations to 1 we obtain:
$1 \longmapsto 2 \longmapsto \frac{1}{2} \longmapsto \frac{1}{2}+2=\frac{5}{2} \longmapsto \frac{2}{5} \longmapsto \frac{2}{5}+1=\frac{7}{5} \longmapsto \frac{5}{7}$.
We can see that $\frac{7}{10}<\frac{5}{7} \Longleftrightarrow 49<50$ and $\frac{5}{7}<\frac{11}{15} \Longleftrightarrow 75<77$.
We will prove that no fractions between $\frac{7}{10}$ and $\frac{11}{15}$ with denominator $n<7 \Longleftrightarrow n \leq 6$.
Really, assuming that such fraction exist we obtain

$$
\frac{7}{10}<\frac{m}{n} \Longleftrightarrow 7 n<10 m \Longleftrightarrow\left[\frac{7 n}{10}\right]+1 \leq m
$$

From the other hand $\frac{m}{n}<\frac{11}{15} \Longleftrightarrow m \leq\left[\frac{11 n}{15}\right]$.
Thus $\left[\frac{7 n}{10}\right]+1 \leq\left[\frac{11 n}{15}\right]$ but for $n=6,5,4$ this inequality becomes, respectively,
$\left[\frac{7 \cdot 6}{10}\right]+1 \leq\left[\frac{11 \cdot 6}{15}\right] \Longleftrightarrow 5 \leq 4,\left[\frac{7 \cdot 5}{10}\right]+1 \leq\left[\frac{11 \cdot 5}{15}\right] \Longleftrightarrow 4 \leq 3$,
$\left[\frac{7 \cdot 4}{10}\right]+1 \leq\left[\frac{11 \cdot 4}{15}\right] \Longleftrightarrow 3 \leq 2$.
Also obvious that $\frac{2}{3}<\frac{7}{10}$. Therefore, minimal denominator is 7 .
Solution 3 .
$\frac{7}{10}<\frac{m}{n}<\frac{11}{15} \Longrightarrow \frac{15}{11}<\frac{n}{m}<\frac{10}{7} \Longleftrightarrow \frac{4}{11}<\frac{n-m}{m}<\frac{3}{7} \Longrightarrow$
$\frac{7}{3}<\frac{m}{n-m}<\frac{11}{4} \Longrightarrow \frac{1}{3}<\frac{m}{n-m}-2<\frac{3}{4} \Longleftrightarrow$
$\frac{1}{3}<\frac{3 m-2 n}{n-m}<\frac{3}{4} \Longrightarrow \frac{4}{3}<\frac{n-m}{3 m-2 n}<3 \Longrightarrow$
$\frac{1}{3}<\frac{n-m}{3 m-2 n}-1<2 \Longleftrightarrow \frac{1}{3}<\frac{3 n-4 m}{3 m-2 n}<2$.
Since fraction with minimal denominator in $\left(\frac{1}{3}, 2\right)$ is $\frac{1}{1}$ then from claim $\left\{\begin{array}{l}3 n-4 m=1 \\ 3 m-2 n=1\end{array}\right.$ we obtain $n=7, m=5$ and further, as in Solution 2.

Problem2.

Rational number represented by irreducible fraction $\frac{p}{q}$ belong
to interval $\left(\frac{6}{13}, \frac{7}{15}\right)$. Prove that $q \geq 28$.
This problem has the following interpretation:
Prove that $\min \left\{q \mid q \in \mathbb{N}\right.$ and $\left.\exists(p \in \mathbb{N})\left[\frac{6}{13}<\frac{p}{q}<\frac{7}{15}\right]\right\}=28$.
We start from two following statement related to positive integers a, b, c, d and represented here in the form of problems, offered to the reader as an exercise

1. Prove that for any fraction $\frac{a}{b}, \frac{c}{d}$ such that $\frac{a}{b}<\frac{c}{d}$ holds inequality $\frac{a}{b}<\frac{a+c}{b+d}<\frac{c}{d}$.
2. Prove that if $b c-a d=1$ then $\frac{a}{b}, \frac{c}{d}$ both irreducible and $\frac{a+c}{b+d}$ is irreducible as well. (In our problem $7 \cdot 13-15 \cdot 6=1$).
We generalize original problem in the form of the following
Theorem.
Let $\frac{a}{b}$ and $\frac{c}{d}$ be two positive fraction such that $\frac{a}{b}<\frac{c}{d}$ and $b c-a d=1$ and irreducible fraction $\frac{p}{q}$ belong to interval $\left(\frac{a}{b}, \frac{c}{d}\right)$.
Then $q \geq b+d$.

Proof.

First note that $c(b+d)-d(a+c)=b(a+c)-a(b+d)=b c-a d=1$.
Assume that there is a fraction $\frac{p}{q}$ such that $\frac{a}{b}<\frac{p}{q}<\frac{c}{d}$ and $q<b+d$.
Since $\frac{a}{b}<\frac{p}{q} \Longrightarrow p b-a q>0 \Longleftrightarrow p b-a q \geq 1$ and

$$
\frac{p}{q}<\frac{c}{d} \Longrightarrow q c-p d>0 \Longleftrightarrow q c-p d \geq 1
$$

then $d(p b-a q)+b(q c-p d) \geq b+d \Longleftrightarrow$

$$
q(b c-a d) \geq b+d \Longleftrightarrow q \geq b+d
$$

Thus, we obtain the contradiction $q \leq b+d<b+d$ which complete the proof.
That is $\min \left\{q \mid q \in \mathbb{N}\right.$ and $\left.\exists(p \in \mathbb{N})\left[\frac{a}{b}<\frac{p}{q}<\frac{c}{d}\right]\right\}=b+d$.
We can prove even more, namely prove that fraction
$\frac{p}{q} \in\left(\frac{a}{b}, \frac{c}{d}\right)$ with smallest denominator $q=b+d$ defined uniquely
and $p=a+c$.
Also we can see that for any fraction $\frac{p}{q}$ such that $\frac{a}{b}<\frac{p}{q}<\frac{c}{d}$
and $b c-a d=1$ holds $q \geq b+d$ and
$p \geq a+c(c(p b-a q)+a(q c-p d) \geq a+c \Longleftrightarrow$

$$
\bar{p}(b c-a d) \geq a+c \Longleftrightarrow p \geq a+\bar{c})
$$

Let $\frac{p}{b+d}$ be fraction with minimal denominator $b+d$ such that

$$
\frac{a}{b}<\frac{p}{b+d}<\frac{c}{d}
$$

Assume that $p>a+c$. Since $0<c(b+d)-p d \Longleftrightarrow 1 \leq c(b+d)-p d$ then $1 \leq c(b+d)-p d<c(b+d)-(a+c) d=b c-a d=1$, that is contradiction.
Therefore, $p=a+c$ and fraction with minimal denominator defined uniquely and equal to $\frac{a+c}{b+d}$.

Remark.

In the case $0<\frac{a}{b}, \frac{c}{d}$ such that $\frac{a}{b}<\frac{c}{d}$ and $b c-a d \neq 1$ the way of finding of "internal" fraction with minimal denominator, represented above isn't works.

II. Problem in general. Theory and algorithms.

So, the purpose of these notes is consideration of the ways to solve of the following general problem
What is the smallest possible denominator for fractions $\frac{m}{n}$ belonging
to the open interval (α, β) where $\alpha<\beta$ are given positive real numbers?
We introduce the following definitions and notations:
Interval (a, b) will be called naturally filled (\mathbb{N} - filled) if there is at
least one natural number m such that $a<m<b((a, b) \cap \mathbb{N} \neq \varnothing)$.
Easy to see that (a, b) is \mathbb{N} - filled if and only if $\lfloor a\rfloor+1<b$.
Indeed, since $\lfloor a\rfloor \leq a<m \Longrightarrow\lfloor a\rfloor+1 \leq m$ and $m<b$ then $\lfloor a\rfloor+1<b$; In case $\lfloor a\rfloor+1<b$ interval (a, b) is obviously $\mathbb{N}-$ filled.
Also we denote via $p(\alpha, \beta)$ the smallest natural n such that interval
$(n \alpha, n \beta)$ is $\mathbb{N}-$ filled, (that is $p(\alpha, \beta):=\min \{n \mid n \in \mathbb{N}$ and $\lfloor n \alpha\rfloor+1<n \beta\})$
and via $q(\alpha, \beta)$ the smallest natural m such that $(p(\alpha, \beta) \alpha<m<p(\alpha, \beta) \beta)$.
Obvious that $q(\alpha, \beta)=\lfloor p(\alpha, \beta) \alpha\rfloor+1$ and then $\alpha<\frac{q(\alpha, \beta)}{p(\alpha, \beta)}<\beta$.
From definitions $p(\alpha, \beta)$ and $q(\alpha, \beta)$ immediately follows that fraction
$\frac{q}{p}$ where $p=p(\alpha, \beta)$ and $q=q(\alpha, \beta)$ is irreducible, because if
$d(p, q)=k \neq 1$ then for $n=p / k \in \mathbb{N}$ interval $(n \alpha, n \beta)$ is
\mathbb{N} - filled and $n<p=p(\alpha, \beta)-$ minimal natural such that $(n \alpha, n \beta)$ is $\mathbb{N}-$ filled.
Also, fraction $\frac{q}{p}$ is the minimal fraction among all fraction which
belong to interval (α, β) in the following sense:
For any fraction $\frac{m}{n}$ such $\alpha<\frac{m}{n}<\beta$ holds inequalities
$p \leq n$ and $q \leq m$.
Indeed, since $\alpha<\frac{m}{n}<\beta \Longleftrightarrow \alpha n<m<\beta n$ then $(\alpha n, \beta n)$ is $\mathbb{N}-$ filled and, therefore, by definition $p \leq n$.

Also, since $\alpha p \leq \alpha n<m$ then $\lfloor\alpha p\rfloor<m \Longrightarrow q=\lfloor\alpha p\rfloor+1 \leq m$.

Thus the fraction $\frac{q}{p}$ fully justifies the name minimal fraction.
${ }^{*}$ (Geometrically this means that if (α, β) is given interval and $h=\frac{1}{n}, n \in \mathbb{N}$ is the step of uniform grid on \mathbb{R}, then smallest n, which provide hit at least one node of a grid inside of interval (α, β), is $p(\alpha, \beta)$ and $q(\alpha, \beta)$ is a number of node closest to α.)
Now we consider two important properties of minimal fraction.

Property1.

If fraction $\frac{q}{p}$ is minimal in (α, β) then fraction $\frac{p}{q}$ is minimal in $\left(\frac{1}{\beta}, \frac{1}{\alpha}\right)$.
Proof.
Since $\frac{m}{n}$ is minimal in $\left(\frac{1}{\beta}, \frac{1}{\alpha}\right)$ then $\frac{n}{m} \in(\alpha, \beta)$ and, therefore, $p \leq n, \quad q \leq m$.
Since $\frac{q}{p}$ is minimal in (α, β) then $\frac{p}{q} \in\left(\frac{1}{\beta}, \frac{1}{\alpha}\right)$ and, therefore, $m \leq q, n \leq p$.Hence, $p=n, q=m$, that is

$$
\begin{equation*}
p(\alpha, \beta)=q\left(\frac{1}{\beta}, \frac{1}{\alpha}\right) \text { and } q(\alpha, \beta)=p\left(\frac{1}{\beta}, \frac{1}{\alpha}\right) \tag{1}
\end{equation*}
$$

Property 2.

If fraction $\frac{q}{p}$ is minimal in (α, β) then for any integer $k \geq-\lfloor\alpha\rfloor$ fraction $\frac{q+k p}{p}$ is minimal in $(\alpha+k, \beta+k)$ as well.
Proof.
Let $\frac{m}{n}$ is minimal in $(\alpha+k, \beta+k)$ and $\frac{q}{p}$ is minimal in (α, β).
Since $\frac{m-k n}{n} \in(\alpha, \beta)$ and $\frac{q}{p}$ is minimal in (α, β) then, $p \leq n$ and $q \leq m-k n$.
Since $\frac{\bar{q}}{p} \in(\alpha, \beta) \Longleftrightarrow \frac{q+k p}{p} \in(\alpha+k, \beta+k)$ then $n \leq p$ and $m \leq q+k p$.
Thus, $p=n$ and $q+k p \geq m \geq q+k n=q+k p \Longrightarrow m=q+k p$. So,
(2) $p(\alpha+k, \beta+k)=p(\alpha, \beta)$ and $q(\alpha+k, \beta+k)=q(\alpha, \beta)+k p(\alpha, \beta)$. First we consider simple but important case when interval (α, β) is \mathbb{N} - filled. Then we obviously have $p(\alpha, \beta)=1$ and $q(\alpha, \beta)=\lfloor\beta\rfloor+1$.
Further we assume that interval (α, β) isn't \mathbb{N} - filled ,that is $\lfloor a\rfloor+1 \geq b$. For some such intervals (α, β) values $p(\alpha, \beta)$ and $q(\alpha, \beta)$ also can be obtained in a close form.

Lemma 1 .

Let $\alpha>1$. Then $p(1, \alpha)=\left\lfloor\frac{\alpha}{\alpha-1}\right\rfloor, q(1, \alpha)=\left\lfloor\frac{\alpha}{\alpha-1}\right\rfloor+1$.

Proof.

Since interval $(n, n \alpha)$ is \mathbb{N} - filled iff
$n+1<n \alpha \Longleftrightarrow 1<n(\alpha-1) \Longleftrightarrow \frac{1}{\alpha-1}<n \Longleftrightarrow$

$$
\begin{aligned}
& \left\lfloor\frac{1}{\alpha-1}\right\rfloor+1 \leq n \Longleftrightarrow\left\lfloor\frac{\alpha}{\alpha-1}\right\rfloor \leq n \text { then } p(1, \alpha)=\left\lfloor\frac{\alpha}{\alpha-1}\right\rfloor \text { and } \\
& q(1, \alpha)=\left\lfloor\left\lfloor\frac{\alpha}{\alpha-1}\right\rfloor \cdot 1\right\rfloor+1=\left\lfloor\frac{\alpha}{\alpha-1}\right\rfloor+1
\end{aligned}
$$

Corollary 1.

Let n is positive integer and $n<\alpha<n+1$ then for interval (n, α) holds

$$
p(n, \alpha)=\left\lfloor\frac{\alpha-n+1}{\alpha-n}\right\rfloor, q(n, \alpha)=n\left\lfloor\frac{\alpha-n+1}{\alpha-n}\right\rfloor+1 .
$$

Proof.
By Lemma 1 and Property 2 we have

$$
p(n, \alpha)=p(1, \alpha-n+1)=\left\lfloor\frac{\alpha-n+1}{\alpha-n}\right\rfloor
$$

and then $q(n, \alpha)=\lfloor n p(n, \alpha)\rfloor+1=n\left\lfloor\frac{\alpha-n+1}{\alpha-n}\right\rfloor+1$.

Corollary 2.

Let $0<\alpha<1$. Then $p(\alpha, 1)=\left\lfloor\frac{1}{1-\alpha}\right\rfloor+1$ and $q(\alpha, 1)=\left\lfloor\frac{1}{1-\alpha}\right\rfloor$.
Proof.
Applying Lemma 1 to interval $\left(1, \frac{1}{\alpha}\right)$ we obtain

$$
p\left(1, \frac{1}{\alpha}\right)=\left\lfloor\frac{1}{1-\alpha}\right\rfloor, q\left(1, \frac{1}{\alpha}\right)=\left\lfloor\frac{1}{1-\alpha}\right\rfloor+1
$$

Then by Property 1 we obtain $p(\alpha, 1)=q\left(1, \frac{1}{\alpha}\right)=\left\lfloor\frac{1}{1-\alpha}\right\rfloor+1$ and $q(\alpha, 1)=p\left(1, \frac{1}{\alpha}\right)=\left\lfloor\frac{1}{1-\alpha}\right\rfloor$.

Corollary 3.

Let (α, β) isn't $\mathbb{N}-$ filled interval, such that $\lfloor\alpha\rfloor+1=\beta$.Then $p(\alpha, \beta)=\left\lfloor\frac{1}{1-\{\alpha\}}\right\rfloor+1, q(\alpha, \beta)=\lfloor\alpha\rfloor+\left\lfloor\frac{1}{1-\{\alpha\}}\right\rfloor(\lfloor\alpha\rfloor+1)$
Proof.

1. If α is integer then, $\beta=\alpha+1$ and, obviously,

$$
p(\alpha, \beta)=2, q(\alpha, \beta)=2 \alpha+1
$$

If α isn't integer then by Property 2 and Corollary 2 we obtain

$$
\begin{aligned}
& p(\alpha, \beta)=p(\alpha,\lfloor\alpha\rfloor+1)=p(\{\alpha\}, 1)=\left\lfloor\frac{1}{1-\{\alpha\}}\right\rfloor+1 \text { and } \\
& q(\alpha, \beta)=q(\alpha,\lfloor\alpha\rfloor+1)=q(\{\alpha\}, 1)+\lfloor\alpha\rfloor p(\alpha, \beta)= \\
& \left\lfloor\frac{1}{1-\{\alpha\}}\right\rfloor+\lfloor\alpha\rfloor\left(\left\lfloor\frac{1}{1-\{\alpha\}}\right\rfloor+1\right)=\lfloor\alpha\rfloor+\left\lfloor\frac{1}{1-\{\alpha\}}\right\rfloor(\lfloor\alpha\rfloor+1) . \\
& \text { Note that formulas } \\
& \quad p(\alpha, \beta)=\left\lfloor\frac{1}{1-\{\alpha\}}\right\rfloor+1, q(\alpha, \beta)=\lfloor\alpha\rfloor+\left\lfloor\frac{1}{1-\{\alpha\}}\right\rfloor(\lfloor\alpha\rfloor+1)
\end{aligned}
$$

which we obtain in supposition α isn't integer gives right result in case α is integer as well. Thus $p(\alpha, \beta)$ and $q(\alpha, \beta)$ for any positive interval (α, β) such
that $\lfloor\alpha\rfloor+1 \leq \beta$ or $\lfloor\alpha\rfloor+1>\beta$ and α is integer represented in close form by formulas obtained above.

Lemma 2.

Let $\lfloor\alpha\rfloor+1>\beta$ and α isn't integer. And let $\alpha^{\prime}:=\frac{1}{\{\beta\}}, \beta^{\prime}:=\frac{1}{\{\alpha\}}$.
If $\left\lfloor\alpha^{\prime}\right\rfloor+1>\beta^{\prime}$ and α^{\prime} isn't integer then $p(\alpha, \beta)>p\left(\alpha^{\prime}, \beta^{\prime}\right)$.

Proof.

Since $\lfloor\alpha\rfloor+1>\beta$ yields $\lfloor\alpha\rfloor=\lfloor\beta\rfloor$ then $\alpha=\{\alpha\}+\lfloor\alpha\rfloor, \beta=\{\beta\}+\lfloor\alpha\rfloor$ and, by Properties 1,2 we obtain

$$
\begin{aligned}
& p(\alpha, \beta)=p(\{\alpha\},\{\beta\})=q\left(\frac{1}{\{\beta\}}, \frac{1}{\{\alpha\}}\right)=q\left(\alpha^{\prime}, \beta^{\prime}\right) \text { and } \\
& q(\alpha, \beta)=q(\{\alpha\},\{\beta\})+\lfloor\alpha\rfloor_{1} p(\alpha, \beta)
\end{aligned}
$$

Denoting $\alpha^{\prime \prime}:=\frac{1}{\left\{\beta^{\prime}\right\}}, \beta^{\prime \prime}:=\frac{1}{\left\{\alpha^{\prime}\right\}}$
we obtain $p(\alpha, \beta)=q\left(\alpha^{\prime}, \beta^{\prime}\right)=p\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right)+\left\lfloor\alpha^{\prime}\right\rfloor p\left(\alpha^{\prime}, \beta^{\prime}\right)$.
Since $\left\lfloor\alpha^{\prime}\right\rfloor \geq 1$ and $p\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right) \geq 1$ then

$$
p(\alpha, \beta) \geq p\left(\alpha^{\prime}, \beta^{\prime}\right)+1 \Longleftrightarrow p(\alpha, \beta)>p\left(\alpha^{\prime}, \beta^{\prime}\right)
$$

Let $\alpha_{0}:=\alpha, \beta_{0}:=\beta$ and suppose that we already have two sequences $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}, \beta_{0}, \beta_{1}, \ldots, \beta_{n}$ such that $\left\lfloor\alpha_{k}\right\rfloor+1>\beta_{k}$ and α_{k} isn't integer, $k=0,1,2, \ldots, n$ where
$\alpha_{k+1}=\frac{1}{\left\{\beta_{k}\right\}}, \beta_{k+1}=\frac{1}{\left\{\alpha_{k}\right\}}, k=0,1,2, \ldots, n-1$.
Let $\frac{q_{k}}{p_{k}}$ is minimal fraction in interval $\left(\alpha_{k}, \beta_{k}\right)$, that is
$p_{k}=p\left(\alpha_{k}, \beta_{k}\right), q_{k}=q\left(\alpha_{k}, \beta_{k}\right), k=0,1, \ldots, n$.
Then $\left\lfloor\alpha_{k}\right\rfloor=\left\lfloor\beta_{k}\right\rfloor, k=0,1,2, \ldots, n$ and by Properties 1,2 we have
$p_{k}=p\left(\alpha_{k}, \beta_{k}\right)=p\left(\left\{\alpha_{k}\right\},\left\{\beta_{k}\right\}\right)=q\left(\alpha_{k+1}, \beta_{k+1}\right)=q_{k+1}$,
$q_{k}=q\left(\alpha_{k}, \beta_{k}\right)=q\left(\left\{\alpha_{k}\right\},\left\{\beta_{k}\right\}\right)+\left\lfloor\alpha_{k}\right\rfloor p\left(\alpha_{k}, \beta_{k}\right)=$
$p\left(\alpha_{k+1}, \beta_{k+1}\right)+\left\lfloor\alpha_{k}\right\rfloor p\left(\alpha_{k}, \beta_{k}\right)=p_{k+1}+\left\lfloor\alpha_{k}\right\rfloor p_{k}, k=0,1,2, \ldots, n-1$.
Since $\left\lfloor\alpha_{n}\right\rfloor+1>\beta_{n}$ and α_{n} isn't integer then denoting

$$
\alpha_{n+1}:=\frac{1}{\left\{\beta_{n}\right\}}, \beta_{n+1}:=\frac{1}{\left\{\alpha_{n}\right\}}
$$

we obtain interval $\left(\alpha_{n+1}, \beta_{n+1}\right)$ with minimal fraction $\frac{q_{n+1}}{p_{n+1}}$, and by
Properties 1,2 we have $p_{n}=q_{n+1}$ and $q_{n}=p_{n+1}+\left\lfloor\alpha_{k}\right\rfloor p_{n}$.
If $\left\lfloor\alpha_{n+1}\right\rfloor+1 \leq \beta_{n+1}$ or $\left\lfloor\alpha_{n+1}\right\rfloor+1>\beta_{n+1}$ and α_{n+1} is integer then we can stop process and calculate
$p_{n+1}=p\left(\alpha_{n+1}, \beta_{n+1}\right), q_{n+1}=q\left(\alpha_{n+1}, \beta_{n+1}\right)$ by obtained
above formulas and by reversing procedure obtain $p(\alpha, \beta)$ and $q(\alpha, \beta)$, or otherwise to continue construction of sequence of intervals $\left(\alpha_{n}, \beta_{n}\right)$ with correspondent minimal fractions $\frac{q_{n}}{p_{n}}$.
But sequence of intervals $\left(\alpha_{n}, \beta_{n}\right)$ obtained by such way can't be infinite because otherwise, accordingly to Lemma 2, we obtain infinite strictly decreasing sequence
of natural numbers $p_{0}>p_{1}>\ldots>p_{n}>\ldots$,i.e. contradiction.
Thus, after finite numbers of such steps we obtain for some n
sequences $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}, \beta_{0}, \beta_{1}, \ldots, \beta_{n}$ such that
$\left\lfloor\alpha_{k}\right\rfloor+1>\beta_{k}$ and α_{k} isn't integer, $k=0,1,2, \ldots, n$ and
$\left\lfloor\alpha_{n+1}\right\rfloor+1 \leq \beta_{n+1}$ or $\left\lfloor\alpha_{n+1}\right\rfloor+1>\beta_{n+1}$ and α_{n+1} is integer.
Then $\frac{q_{n+1}}{p_{n+1}}$ is minimal fraction in $\left(\alpha_{n+1}, \beta_{n+1}\right)$ obtained by
formulas above.
Using recurrences $p_{k-1}=q_{k}, q_{k-1}=p_{k}+\left\lfloor\alpha_{k-1}\right\rfloor q_{k}, k=n+1, n, \ldots, 1$ and starting from p_{n+1}, q_{n+1} we consequentially obtain $p_{n}, q_{n}, \ldots, p_{1}, q_{1}, p_{0}, q_{0}$.
We can simplify algorithm by the following way:
Using $p_{n+1}, p_{n}=q_{n+1}$ and recurrence

$$
p_{k-2}=p_{k-1}+\left\lfloor\alpha_{k-1}\right\rfloor p_{k}, k=n+1, n-1, \ldots, 2
$$

we can obtain $p(\alpha, \beta)=p_{0}$. Then, $\quad q(\alpha, \beta)=\left\lfloor p_{0} \alpha\right\rfloor+1$.
But we will represent another, more efficient way of finding
$p(\alpha, \beta)$ and $q(\alpha, \beta)$. Namely, denoting
$x:=p_{0}=p(\alpha, \beta), y:=q_{0}=q(\alpha, \beta)$ we obtain $y=p_{1}+\left\lfloor\alpha_{0}\right\rfloor q_{1}, x=q_{1}$.
Hence, $q_{1}=x, p_{1}=y-\left\lfloor\alpha_{0}\right\rfloor x$ and more generally for any
$k=1,2, \ldots, n+1$ we assume that $p_{k}=a_{k} x+b_{k} y, q_{k}=c_{k} x+d_{k} y$
and then, since
$p_{k-1}=q_{k} \Longleftrightarrow a_{k-1} x+b_{k-1} y=c_{k} x+d_{k} y \Longleftrightarrow$
$\left(a_{k-1}-c_{k}\right) x+\left(b_{k-1}-d_{k}\right) y=0$ and $q_{k-1}=p_{k}+\left\lfloor\alpha_{k-1}\right\rfloor q_{k} \Longleftrightarrow$
$c_{k-1} x+d_{k-1} y=a_{k} x+b_{k} y+\left\lfloor\alpha_{k-1}\right\rfloor\left(c_{k} x+d_{k} y\right) \Longleftrightarrow$
$\left(c_{k-1}-a_{k}-\left\lfloor\alpha_{k-1}\right\rfloor c_{k}\right) x+\left(d_{k-1}-b_{k}-\left\lfloor\alpha_{k-1}\right\rfloor d_{k}\right) y=0$
we obtain the following correlation
$a_{k-1}=c_{k}, b_{k-1}=d_{k}, c_{k-1}=a_{k}+\left\lfloor\alpha_{k-1}\right\rfloor c_{k}, d_{k-1}=$
$b_{k}+\left\lfloor\alpha_{k-1}\right\rfloor d_{k}, k=1,2, \ldots, n+1$.
Thus, $p_{k}=a_{k} x+b_{k} y, q_{k}=a_{k-1} x+b_{k-1} y$ where a_{k} and b_{k}
satisfy to the same recurrence $r_{k}=r_{k-2}-\left\lfloor\alpha_{k-1}\right\rfloor r_{k-1}, k=2, \ldots, n+1$
and from $q_{1}=x=a_{0} x+b_{0} y, p_{1}=a_{1} x+b_{1} y=y-\left\lfloor\alpha_{0}\right\rfloor x$
we obtain $a_{0}=1, a_{1}=-\left\lfloor\alpha_{0}\right\rfloor$ and $b_{0}=0, b_{1}=1$.
Since $a_{k+1} b_{k}-a_{k} b_{k+1}=\left(a_{k-1}-\left\lfloor\alpha_{k}\right\rfloor r_{k}\right) b_{k}-a_{k}\left(b_{k-1}-\left\lfloor\alpha_{k}\right\rfloor r_{k}\right)=$ $-\left(a_{k} b_{k-1}-a_{k-1} b_{k}\right)$ then $a_{k+1} b_{k}-a_{k} b_{k+1}=(-1)^{k}\left(a_{1} b_{0}-a_{0} b_{1}\right)=(-1)^{k+1}$
and, therefore, from system
$\left\{\begin{array}{c}a_{n+1} x+b_{n+1} y=p_{n+1} \\ a_{n} x+b_{n} y=q_{n+1}\end{array}\right.$
we obtain $\frac{q(\alpha, \beta)}{p(\alpha, \beta)}=\frac{y}{x}=\frac{(-1)^{n+1}\left(b_{n+1} q_{n+1}-b_{n} p_{n+1}\right)}{(-1)^{n+1}\left(a_{n} p_{n+1}-a_{n+1} q_{n+1}\right)}=\frac{b_{n+1} q_{n+1}-b_{n} p_{n+1}}{a_{n} p_{n+1}-a_{n+1} q_{n+1}}$.
And one more way:
Let $t_{k}:=\frac{q_{k}}{p_{k}}$ and $t:=t_{0}$. Also let $r_{k}:=\left\lfloor\alpha_{k}\right\rfloor, k=0,1, \ldots, n$.
Since $q_{k+1}=p_{k}$ and $p_{k+1}=q_{k}-\left\lfloor\alpha_{k}\right\rfloor p_{k}=q_{k}-r_{k} p_{k}$ then
$t_{k+1}=\frac{q_{k+1}}{p_{k+1}}=\frac{p_{k}}{q_{k}-r_{k} p_{k}}=\frac{1}{t_{k}-r_{k}}$.
Thus, we have sequence $\left(t_{k}\right)$ of minimal fractions defined by $t_{0}=t$ and

$$
t_{k+1}=\frac{1}{t_{k}-r_{k}}, k=0,1, \ldots, n
$$

By consideration first several terms $t_{1}=\frac{1}{t-r_{0}}, t_{2}=\frac{1}{t_{1}-r_{1}}=\frac{1}{\frac{1}{t-r_{0}}-r_{1}}=$
$\frac{t-r_{0}}{\left(1+r_{0} r_{1}\right)-r_{1} t}, t_{3}=\frac{1}{t_{2}-r_{2}}=\frac{1}{\frac{t-r_{0}}{\left(1+r_{0} r_{1}\right)-r_{1} t}-r_{2}}=\frac{\left(1+r_{0} r_{1}\right)-r_{1} t}{t\left(1+r_{1} r_{2}\right)-\left(r_{0}+r_{2}+r_{0} r_{1} r_{2}\right)}$
we can see that it makes sense to find t_{k} in form $t_{k}=\frac{a_{k-1} t+b_{k-1}}{a_{k} t+b_{k}}$.
Then from
$t_{k+1}=\frac{1}{t_{k}-r_{k}} \Longleftrightarrow \frac{a_{k} t+b_{k}}{a_{k+1} t+b_{k+1}}=\frac{1}{\frac{a_{k-1} t+b_{k-1}}{a_{k} t+b_{k}}-r_{k}}=\frac{a_{k} t+b_{k}}{\left(a_{k-1}-r_{k} a_{k}\right) t+b_{k-1}-r_{k} b_{k}}$
follows $a_{k+1}=a_{k-1}-r_{k} a_{k}, b_{k+1}=b_{k-1}-r_{k} b_{k}$.
Also, since $t_{1}=\frac{1}{t-r_{0}}=\frac{a_{0} t+b_{0}}{a_{1} t+b_{1}}$ we have $a_{0}=0, b_{0}=1, a_{1}=1, b_{1}=-r_{0}$.
From equation $\frac{a_{n} t+b_{n}}{a_{n+1} t+b_{n+1}}=t_{n+1}$ we obtain

$$
a_{n} t+b_{n}=t_{n+1} a_{n+1} t+b_{n+1} t_{n+1} \Longleftrightarrow
$$

$t\left(a_{n}-t_{n+1} a_{n+1}\right)=b_{n+1} t_{n+1}-b_{n} \Longleftrightarrow t=\frac{b_{n+1} t_{n+1}-b_{n}}{a_{n}-t_{n+1} a_{n+1}}$.
In addition consider representation of minimal fraction in (α, β) by continued fraction.

Since $t_{k+1}=\frac{1}{t_{k}-r_{k}} \Longleftrightarrow t_{k}=r_{k}+\frac{1}{t_{k+1}}$ then $t_{0}=r_{0}+\frac{1}{t_{1}}=r_{0}+\frac{1}{r_{1}+\frac{1}{t_{2}}}=$
$r_{0}+\frac{1}{r_{1}+\frac{1}{r_{2}+\frac{1}{t_{3}}}}=r_{0}+\frac{1}{r_{1}+\frac{1}{r_{2}+\frac{1}{\ldots r_{n}+\frac{1}{t_{n+1}}}}}$.
If $h_{k}(x)=r_{k}+\frac{1}{x}$ then $t_{0}=\left(h_{0} \circ h_{1} \circ \ldots \circ h_{n}\right)\left(t_{n+1}\right)$.
Function $f_{k}(t)=\frac{1}{t-r_{k}}$ is inverse function for $h_{k}(t)$.
Indeed, $\left(f_{k} \circ h_{k}\right)(t)=\frac{1}{r_{k}+\frac{1}{t}-r_{k}}=t$ and
$\left(h_{k} \circ f_{k}\right)(t)=r_{k}+\frac{1}{f_{k}(t)}=r_{k}+t-r_{k}=t$.
And, at last, some problems to solve.

Problem 3.

a) Find minimal denominator of internal fractions in the interval $\left(\frac{97}{36}, \frac{96}{35}\right)$.
b) Find minimal denominator of internal fractions in the interval $\left(\sqrt{2}, \frac{71}{50}\right)$.
c) Find minimal internal fraction in interval $\left(\frac{x^{2}}{(x+1)^{2}}, \frac{x^{2}+1}{(x+1)^{2}-1}\right)$
where $x, x+2$ are prime numbers.
Problem 4.
Find minimal internal fraction in interval (α, β) if:
a) $(\alpha, \beta)=(\sqrt{28}, \sqrt{35})$;
b) $(\alpha, \beta)=\left(\frac{220}{127}, \sqrt{3}\right)$.

Problem 5.
Find the smallest possible value of $x+y$, if x and y are positive integers such that
$\frac{n-1}{n}<\frac{x}{y}<\frac{n}{n+1}, n \in \mathbb{N}$.(Generalization of problem M436, CRUX).

